
VERILOG 설계언어 중급 2일차

김두영

doo0@hanyang.ac.kr

2018. Aug. 10

2일차 (8월 10일)

10:00 ~ 11:20 ASIC 개발과 VERILOG HDL

11:40 ~ 13:00 ASIC 개발과 VERILOG HDL (계속)

13:00 ~ 14:00 점심시간

14:00 ~ 15:20 ASIC 개발실습 – 합성, Timing Closure

15:40 ~ 17:00 ASIC 개발실습 – LEC, DFT

2/98

3/98

1. Design flow for ASIC

4/98

RTL Design

Specification

High-level
Modeling

C/SystemC

Synthesis/
DFT

Place & Route

DB out

ASIC front-end ASIC back-endDesign

Verilog/VHDL Synopsys
DesignCompiler
DFT Compiler

Synopsys
IC Compiler

1. How to verify my RTL design?

5/98

RTL Design

Specification

High-level
Modeling

C/SystemC

Design

Verilog/VHDL

* Functional verification

- Simulation : testbench

How to make a good test-
bench for my design?

Is it enough?

- Formal verification

High complexity

- Code coverage

The quality of testbench

- Lint rule check

Is it synthesizable?

2. Code coverage

* Code coverage

- Code coverage tells how well your HDL code has been exercised
by your testbench

- Statement coverage

- Block coverage

- Condition/Expression coverage

- Branch/Decision coverage

- Toggle coverage

- FSM coverage

6/98

2. Code coverage

* Statement coverage

- How many statements(lines) are covered in the simulation, by
excluding lines like module, endmodule, comments, timescale.

- Example

7/98

2. Code coverage

* Block coverage

- Block: a group of statements which are in the begin-end or if-else
or case or while loop or for loop

- Block coverage gives the indication that whether these blocks are
covered in simulation or not

- Example

8/98

2. Code coverage

* Conditional/Expression coverage

- This gives an indication how well variables and expressions in
conditional statements are evaluated

- Example

All the possible cases would be available as truth table and
uncovered expression can be easily identified from the table

9/98

2. Code coverage

* Branch/Decision coverage

- Conditions like if-else, case and the ternary operator(?:) statements
are evaluated in both true and false cases

- Example

10/98

2. Code coverage

* Toggle coverage

- It gives a report that how many times signals and ports are
toggled during a simulation run

- It measures activity in the design, such as unused signals or
constant signals or less value changed signals

* FSM coverage

- It reports that whether the simulation run could reach all of the
states and cover all state transitions in a given FSM

- It is complex coverage type as it works on behavior of the design

11/98

3. Lint

* Definition

- The generic term given to design verification tools that perform a
static analysis of software based on a series of rules and guidelines
that reflect good coding practice

- In the hardware-design space, linting is typically applied to
hardware description languages (HDLs) such as Verilog,
SystemVerilog and VHDL prior to simulation

- the goal is increasingly to clean RTL before entering that
increasingly lengthy process

- used to check for potential mismatches between simulation and
synthesis

12/98

3. Lint

* Typical Lint targets

- Unsynthesizable constructs

- Unintentional latches

- Unused declarations

- Driven and undriven signals

- Race conditions

- Incorrect usage of blocking and non-blocking assignments

- Incomplete assignments in subroutines

- Case statement style issues

- Set and reset conflicts

- Out-of-range indexing

13/98

3. Lint

* Spyglass Synthesis Rule – badimplicitSM1

- Identifies the sequential logic in a non-synthesizable modelling
style where clock and reset cannot be inferred

- Unsynthesizable

- Severity level: Error

14/98

3. Lint

* Spyglass Synthesis Rule – badimplicitSM2

- Identifies the implicit sequential logic in a non-synthesizable
modeling style where states are not updated on the same clock
phase

- The synthesis tool can get confused about which edge to use for
updating the register

- RTL and gate-level simulation results

may not match

- Severity level: Error

15/98

3. Lint

* Spyglass Synthesis Rule – badimplicitSM4

- Identifies the non-synthesizable implicit sequential logic where
event control expressions have multiple edges

- The synthesis tool can get confused about which edge to use for
updating the register

- RTL and gate-level simulation results may not match

- Severity level: Error

16/98

3. Lint

* Spyglass Synthesis Rule – bothedges

- Identifies the variable whose both the edges are used in an event
control list

- Synthesis tools do not allow both edges of the same variable in an
event control list

- Severity level: Error

17/98

3. Lint

* Spyglass Synthesis Rule – mixedsenselist

- Mixed conditions in sensitivity list may not be synthesizable

- It flags mixed edge and non-edge conditions in the sensitivity list
of an always construct.

- Severity level: Error

18/98

3. Lint

* Spyglass Synthesis Rule – readclock

- Unsynthesizable implicit sequential logic: clock read inside always
block

- It flags sequential descriptions where the clock signal is read
inside the always construct

- Severity level: Warning

19/98

3. Lint

* Spyglass Synthesis Rule – W182g, W182h, W182n

- Identifies the tri0/tri1 net declarations which are not synthesizable

- The tri0 and tri1 net declarations represent connections with
resistive pull-down or pull-up

- Some technologies may not support tristate operations

- Severity level: Error

20/98

3. Lint

* Spyglass Synthesis Rule – W182n

- Reports MOS switches, such as cmos, pmos, and nmos, that are not
synthesizable

- Except for custom or analog design, transistor-level design is
generally discouraged because behavior and timing are difficult to
predict under all possible circumstances

- Severity level: Error

21/98

3. Lint

* Spyglass Synthesis Rule – W213

- Reports PLI tasks or functions that are not synthesizable

- The PLI tasks or functions, such as $display, have no physical
meaning and therefore are not synthesizable

- translate_off & translate_on

- Severity level: Warning

22/98

3. Lint

* Spyglass Synthesis Rule – W218

- Reports multi-bit signals used in sensitivity list

- Edge specifications for multi-bit expression is semantically
incorrect

- In such cases, only the changes on least significant bit are
important

- Severity level: Warning

23/98

3. Lint

* Spyglass Synthesis Rule – W239

- Reports hierarchical references that are not synthesizable

- Synthesis tools, in general, do not create connections
corresponding to these references

- Severity level: Warning

24/98

3. Lint

* Spyglass Synthesis Rule –W294

- Reports real variables that are unsynthesizable

- Objects with real values have no physical equivalent and therefore
may not be synthesizable

- Severity level: Warning

25/98

3. Lint

* Spyglass Synthesis Rule – W430

- The "initial" statement is not synthesizable

- The initial constructs have no physical equivalent

- Severity level: Warning

26/98

3. Lint

* Spyglass Synthesis Rule – W442a

- Ensure that for unsynthesizable reset sequence, first statement in
the block must be an if statement

- In general, synthesis tools expect that the first statement inside an
asynchronously reset block is an if statement

- Severity level: Error

27/98

3. Lint

* Spyglass Synthesis Rule –W442b

- Ensure that for unsynthesizable reset sequence, reset condition is
not too complex

- Violation may arise when a reset signal is compared with any
other signal or variable or a non-constant expression

- Severity level: Error

28/98

3. Lint

* Spyglass Synthesis Rule –W442c

- Ensure that the unsynthesizable reset sequence are modified only
by ! or ~ in the if condition

- Violation may arise when a reset signal is being modified by an
operator other than logical inverse (!) and bit-wise inverse (~)
operators

- Severity level: Error

29/98

3. Lint

* Spyglass Lint_Clock Rule – W391

- Reports modules driven by both edges of a clock

- As a result of using both the edges, the behavior of that module
gets dependent on the duty cycle of the clock

- Severity level: Warning

30/98

3. Lint

* Spyglass Lint_Clock Rule – W401

- Clock signal is not an input to the
design unit

- Localize clock generation and gating
to a single module if possible

- Timing and test issues can be
managed carefully with respect to that
one module rather than in many
locations in the design

- Severity level: Warning

31/98

3. Lint

* Spyglass Lint_Clock Rule – W422

- Unsynthesizable block or process: event control has more than
one clock

- It reports violation for potentially un-synthesizable block

- Severity level: Warning

32/98

3. Lint

* Spyglass Lint_Reset Rule – W392

- Reports reset or set signals used with both positive and negative
polarities within the same design unit

- When both polarities of reset/set signal are used, one logic block
always remain in a reset/set state

- Violation may arise when two

different IP blocks are connected

together at a SoC level

- Severity level: Warning

33/98

3. Lint

* Spyglass Lint_Reset Rule – W395

- Multiple asynchronous resets or sets in a process or always may
not be synthesizable

- It reports if more than one asynchronous reset or set signals exist
in the same process or always block

- Severity level: Warning

34/98

3. Lint

* Spyglass Lint_Reset Rule – W501

- A connection to a reset port should not be a static name

- Always connect a real signal. Tie that signal off if you really want
to disable the reset

- Severity level: Warning

35/98

3. Lint

* Spyglass Lint_Latch Rule – W18

- Do not infer latches

- Check the inference to make sure it is what you intended

- If not, prevent latch inferences by providing an explicit else clause
at the end of the if statement, or default clause at the end of the
case statement, to prevent inferring the latch

- Severity level: Warning

36/98

3. Lint

* Spyglass Assign Rule – W19

- Reports the truncation of extra bits

- When constant value is wider than the width of the constant, it
results in truncation of extra bits

- To resolve the violation, determine the width specification and the
constant value

- Severity level: Warning

37/98

3. Lint

* Spyglass Assign Rule – W336

- Blocking assignment should not be used in a sequential block

- When a blocking assignment is used in a sequential block,
inherent sequence of operation is implied in simulation

- However, the synthesized hardware may behave in a concurrent
fashion

- Severity level: Warning

38/98

3. Lint

* Spyglass Assign Rule – W414

- Reports nonblocking assignment in a combinational block

- Violation may arise when a nonblocking assignment is used in a
combinational block

- Not fixing the violation may result in unexpected code behavior

- Severity level: Warning

39/98

3. Lint

* Spyglass Case Rules

- W69: case constructs that do not have all possible clauses
described and also do not have the default clause

- W71: case constructs that do not contain a default clause

- W187: case constructs where the default clause is not the last
clause

- W263: case constructs that do not have all possible clauses
described and have a default clause

- W398: Duplicate choices in CASE construct

40/98

3. Lint

* Spyglass Instance Rules

- W107: Bus connections to primitive gates

- W110: Width mismatch between a module port and the net
connected to the port in a module instance

- W287a: Module instances where nets connected to input ports are
not driven

41/98

3. Lint

* Lint rule examples (Leda Verilint policy)

42/98

3. Lint

* Lint rule examples (Leda Verilint policy)

43/98

3. Lint

* Lint rule examples (Leda Verilint policy)

44/98

3. Lint

* Lint rule examples (Leda Verilint policy)

45/98

3. Lint

* Lint rule examples (Leda Verilint policy)

46/98

1. Now, synthesizable. Is it enough?

47/98

Synthesis/
DFT

ASIC front-end

Synopsys
DesignCompiler
DFT Compiler

* Design constraints

- Timing

Does the operation speed of the design meet the
spec?

- Power

Does the power consumption of the design meet
the spec?

- Area

Does the design fit for the size of product?

* DFT rule check

- How to identify the defect caused by
manufacturing process

2. Pipelined design

* Pipelined RTL

- Insert the additional F/Fs into the data path

48/98

3. Low power design

* Dynamic power

- Power dissipation in a CMOS transistor depends on the
capacitance, supply voltage and the rate at which the data toggles

- Cload is the load capacitance of the CMOS transistor

- VDD is the supply voltage

- f is the frequency at which the data transition happens

- An efficient and high quality HDL code can reduce unwanted
transitions

49/98

3. Low power design

* Minimizing data transitions on bus

- The data on the bus keeps on transitioning from one value to
another because there is no default state for assigning a constant
value

50/98

3. Low power design

* Resource sharing

- The RTL coding should be carried out in a manner that there are
no unwanted or redundant logic elements

51/98

3. Low power design

* Avoiding unnecessary transition of signal

- It is seen in many designs that certain signals transit when they
are not required to, but they are not detected in functional
verification, as they satisfy the logical requirements.

* State Machine Encoding

- It is a well known fact that one-hot and Gray encoding
consume lesser power as compared to binary encoding

52/98

3. Low power design

* Control over counters

- Due to improper coding, all the start and stop conditions are not
taken care of and the counter may unnecessarily keep on counting

53/98

3. Low power design

* Register retiming

- There is a saving of logic and thus can help improve upon power
consumption

54/98

3. Low power design

* Clock gating

- Clock

Highest transition probability

Long lines and interconnections

Consumes a significant fraction of power (sometimes more than
40% if not guarded)

55/98

3. Low power design

* Clock gating

- Gate the clock if is not needed

56/98

4. DFT

* DFT mandatory rules (Synopsys Tetramax)

- D1 : Clock of F/F cannot be controlled

By inserting multiplexer with scan clock from outside of the design,
D1 rule can be fixed

57/98

4. DFT

* DFT mandatory rules (Synopsys Tetramax)

- D2/D3 : Reset/Set of F/F cannot be controlled

By inserting multiplexer with external reset from outside of the
design, D2 and D3 can be fixed

58/98

4. DFT

* DFT mandatory rules (Synopsys Tetramax)

- D9 : Clock gating logic is not identified – clock of F/F cannot be
controlled

Clock gating identification is only way to fix this violation

Unrecognizable clock gating logic have to be removed

59/98

4. DFT

* DFT mandatory rules (Synopsys Tetramax)

- D11 : race condition between clock and data input is occurred

This violation is caused by F/F which use scan test clock as its data
input signal

60/98

For design quality assurance

* Functional verification

- Code coverage

- Lint

* Design constraints verification

- Timing

- Power

- Area

* DFT

61/98

62/98

1. Non-ideal FF behavior

* Timing factors

- Setup time : minimum time before the clocking event by which the
input must be stable (Tsu)

- Hold time : minimum time after the clocking event until which the
input must remain stable (Th)

- Propagation delay : amount of time for value to propagate from
input to output (Tpd)

63/98

2. Clock skew

* The problem

- Correct behavior assumes next state of all storage elements
determined by all storage elements at the same time

- This is difficult in high-performance systems because time for clock
to arrive at flip-flop is comparable to delays through logic

- Effect of skew on cascaded flip-flops:

64/98

3. Metastability

* Definition

- Violating setup/hold time can lead to a metastable state

- Any flip-flop state other than a stable 1 or 0

- Eventually settles to one or other, but we don’t know which

* Solution

- Insert synchronizer flip-flop for asynchronous input

65/98

3. Metastability

* More than double flip-flop

- One flip-flop doesn’t completely solve problem

- Add more synchronizer flip-flops to decrease the probability of
metastability

- Can’t solve completely

- just decrease the likelihood of failure

66/98

4. Synchronization failure

* Occurs when FF input changes close to clock edge

- The FF may enter a metastable state : Neither a logic 0 nor 1

- It may stay in this state an indefinite amount of time

- This is not likely in practice but has some probability

67/98

5. Handling asynchronous inputs

68/98

1. Blocking vs. Non-blocking

* Blocking (=) assignment

- Blocking assignments happen sequentially

- Blocking assignments are used when specifying combi. logics

69/98

1. Blocking vs. Non-blocking

* Non-blocking (<=) assignment

- Non-blocking assignments happen in parallel

- Non-blocking assignments are used when specifying seq. logics

70/98

1. Latch generation

* Incomplete assignment

- If you don’t assign every element that can be assigned inside an
always@(*) block every time, a latch will be inferred

- C on the other hand is not always assigned

- As such, a latch is inferred for C

71/98

2. Latch-free

* Complete assignment

- Default values are an easy way to avoid latch generation, however,
will sometimes break the logic in a design

- Typically, they involve proper use of the Verilog else statement,
and other flow constructs.

72/98

Advanced design issues

* Synchronization

- Clock skew

- Metastability

- Asynchronous input handling

* Assignment

- Blocking assignment

- Non-blocking assignment

* Latch-free design

73/98

74/98

1. Target Library 설정

* Target library

- tc6a_cbacore.db: SYNOPSYS에서제공하는라이브러리

- target_library: 합성시에사용할라이브러리

- link_library: RTL 코드상에서직접 instantiation하는라이브러리 cell
에대해 link 과정에서인식할수있도록하는라이브러리

* 실습

dc_shell> set target_library “tc6a_cbacore.db“

dc_shell> set link_library “tc6a_cbacore.db“

75/98

2. Design 준비

* Working space

- Design 분석과정에서발생하는출력파일이저장될 working space 설
정

- 기존작업내용과충돌방지하기위해디렉토리삭제후재생성

* 실습

dc_shell> sh rm –rf .template

dc_shell> sh mkdir .template

dc_shell> define_design_lib WORK –path .template

76/98

2. Design 준비

* Design 파일 읽기

- Design 파일읽기: analyze command 사용, 읽어오는순서는상관없음

* 실습

dc_shell> analyze –format verilog

../01_RTL/src/rtl/verilog/stack_top.v

===

dc_shell> source

/home/student40/100_EXPR/02_SYN/import_design.src

77/98

2. Design 준비

* Design Elaboration & Link

- Design hierarchy를구축하는 elaboration 및 link 수행

- 두번이상 instantiation 되는 module에대해별도의 module로선언하
는 uniquify 작업도수행됨

* 실습

dc_shell> elaborate RISC_CORE

dc_shell> current_design RISC_CORE

dc_shell> link

78/98

3. Design Constraints 준비

* Timing constraints 정의

- Clock을정의: create_clock, create_generated_clock

* 실습
dc_shell> create_clock –name “Clk” –period 7 –waveform {0 3.5} [get_ports “Clk”]

dc_shell> set_don’t_touch_network [get_clocks “Clk”]

dc_shell> set_input_delay 4.4 –max –rise –clock “Clk” [get_ports “Instrn[*]”]

dc_shell> set_input_delay 4.5 –max –fall –clock “Clk” [get_ports “Instrn[*]”]

dc_shell> set_input_delay 4.4 –max –rise –clock “Clk” [get_ports “Reset”]

dc_shell> set_input_delay 4.3 –max –fall –clock “Clk” [get_ports “Reset”]

dc_shell> set_output_delay 4.3 –max –fall –clock “Clk” [all_outputs]

dc_shell> set_clock_uncertainty 1.0 –setup [get_clocks “Clk”]

dc_shell> set_clock_uncertainty 0.055 –hold [get_clocks “Clk”]

dc_shell> set_false_path –to [get_cells “I_ALU/Neg_Flag_reg”]

dc_shell> set_false_path –to [get_cells “I_ALU/Zro_Flag_reg”]

dc_shell> set_wire_load_mode “enclosed”
79/98

4. Design 합성

* Design 합성 수행

- compile_ultra

- Design을 Target library로 mapping, timing constraints, area
constraints, power constraints를 최적화하는 작업을 반복함

* 실습

dc_shell> compile_ultra –scan –no_autoungroup

–no_seq_output_inversion –no_boundary_optimization

80/98

5. Design 합성 결과 확인하기

* Design constraints 사항 확인

- Timing violation: report_timing

- Area overhead: report_area

- Power overhead: report_power

* 실습

dc_shell> report_timing –nworst 2 –delay_type max

dc_shell> report_timing –nworst 2 –delay_type min

dc_shell> report_area –hier

dc_shell> report_power –hier -verbose

81/98

6. Design 합성 결과 파일 생성하기

* 합성 결과 파일 생성

- Gate-level netlist, DDC, SDF, SDC 파일 등 생성

* 실습

dc_shell> write –f verilog –hier –output RISC_CORE_gate.v

dc_shell> write_sdf –v 2.1 –context verilog RISC_CORE_gate.sdf

82/98

83/98

1. 환경 설정

* LEC 수행 환경 조건 설정

- Design elaboration error waive하기위한 setting

- Design elaboration을위한 library 지정

* 실습

fm_shell> set hdlin_warn_on_mismatch_message “FMR_ELAB-146

FMR_ELAB-147 FMR_ELAB-149”

fm_shell> read_db

/tools/synopsys/design_compiler/libraries/syn/tc6a_cbacore.db

84/98

2. Design 설정

* RTL Design 설정

- Golden. Formality에서는 reference라 명함

* 실습

fm_shell> read_verilog –libname WORK –c r

/home/student40/100_EXPR/01_RTL/src/rtl/verilog/stack_top.v

…..

fm_shell> set_top r:/WORK/RISC_CORE

85/98

2. Design 설정

* Gate-level Design 설정

- Revised. Formality에서는 implementation이라 명함

* 실습

fm_shell> read_verilog –libname WORK –c i ./RISC_CORE_gate.v

fm_shell> set_top i:/WORK/RISC_CORE

86/98

3. LEC 수행

* Verification 수행 및 결과확인

- Reference design과 implementation design 설정후검증수행

- 수행결과가 non-equivalent인 경우원인파악및해결과정필요

* 실습

fm_shell> set_reference_design r:/WORK/RISC_CORE

fm_shell> set_reference_design i:/WORK/RISC_CORE

fm_shell> verify r:/WORK/RISC_CORE i:/WORK/RISC_CORE

87/98

4. Non-equivalent 원인 해결 과정

* GUI를 통한 원인 파악

- Register merge, constant register deletion 등에의해 unmapped
point 발생하는경우가많음

- 합성제약조건부여또는 LEC 상에서 design에대한정보반영하여해
결가능

* 실습
fm_shell> set_svf [glob ./top.svf] => Design compiler에서생성

or

fm_shell> guide

fm_shell> guide_reg_merging –design INSTRAN_LAT –from
{Crnt_Instrn_1_reg[0] Crnt_Instrn_2_reg[0]} –to {Crnt_Instrn_2_reg[0]}

fm_shell> setup

88/98

89/98

1. Target Library 설정

* Target library

- tc6a_cbacore.db: SYNOPSYS에서제공하는라이브러리

- target_library: 합성시에사용할라이브러리

- link_library: RTL 코드상에서직접 instantiation하는라이브러리 cell
에대해 link 과정에서인식할수있도록하는라이브러리

* 실습

dc_shell> set target_library “tc6a_cbacore.db“

dc_shell> set link_library “tc6a_cbacore.db“

90/98

2. Design 준비

* Working space

- DFT 과정에서발생하는출력파일을저장할 reporting space 설정

- 기존작업내용과충돌방지하기위해디렉토리삭제후재생성

* 실습

dc_shell> sh rm –rf report

dc_shell> sh mkdir report

91/98

2. Design 준비

* Design 파일 읽기

- Gate-level Design Reading: read_verilog -netlist

* 실습

dc_shell> read_verilog –netlist ./RISC_CORE_gate.v

dc_shell> current_design RISC_CORE

dc_shell> link

92/98

3. DFT constraints 정의

* DFT configuration 정의

- Scan test configuration

* 실습

dc_shell> set_scan_configuration –chain_count 4

dc_shell> set_scan_configuration –add_lockup true

dc_shell> set_scan_configuration –lockup_type latch

dc_shell> set_scan_configuration –clock_mixing mix_clocks

dc_shell> set_scan_configuration –create_dedicated_scan_out_ports true

dc_shell> set_scan_configuration –preserve_multibit_segment true

dc_shell> set_scan_configuration –style multiplexed_flip_flop

dc_shell> set_scan_configuration –replace true

93/98

3. DFT constraints 정의

* DFT configuration 정의

- DFT signal 정의

* 실습

dc_shell> create_port scan_mode

dc_shell> set_dft_signal –view spec –port scan_mode –type TestMode

–active 1

dc_shell> set_dft_signal –view exist –port Reset –active 1

dc_shell> set_dft_signal –view exist –port ScanClock –timing [list 45 55]

94/98

4. Pre-DFTDRC 진행

* DFT rule checking

- Pre-DFT DRC는 design내의모든 flip-flop에대해 scan chain에삽입하
는것이가능한지검사

* 실습

dc_shell> create_test_protocol –capture_procedure single_clock

dc_shell> dft_drc –verbose –pre_dft > report/drc_pre_insert.dft

95/98

5. DFT insertion 진행

* DFT insertion

- Pre-DFT DRC에대한검사및해결후 design 상에 scan chain을삽입하
는단계

- DFT 삽입후 post-DFT DRC 진행

* 실습

dc_shell> preview_dft –test_points all –show all > report/preview_dft.log

dc_shell> insert_dft

dc_shell> dft_drc –verbose > report/insert_drc.dft

96/98

6. DFT 결과 파일 생성

* DFT 결과 파일 reporting

- DFT 삽입된후의 gate-level netlist

- Scan chain 정보를갖는 def 파일

- ATPG를위한테스트 procedure 파일

* 실습

dc_shell> write –f verilog –hier –out report/RISC_CORE_after_scan.v

dc_shell> write_scan_def –output report/RISC_CORE_after_scan.def

dc_shell> write_test_protocol –o report/RISC_CORE_after_scan.spf

97/98

Thank you

98/98

