VERILOG &

) B Al | D A
IC DESIGN EDUCATION CENTER

dooO@hanyang.ac.kr
2018. Aug. 10

39 AIZIH (22AhH

22| (884 102=)
10:00 ~ 11:20 ASIC 1= VERILOG HDL

11:40 ~ 13:00 ASIC THEITI VERILOG HDL (HI&)
13:00 ~ 14:00 =H&A|!
14:00 ~ 15:20 ASIC lI=

= 218, Timing Closure
15:40 ~ 17:00 ASIC [I&

LEC, DFT

F AL
_ e —
F AL
_ e —

ASIC el VERILOG HDL I} E 1

) B Al | D A
IC DESIGN EDUCATION CENTER

3/98

Design Flow - ASIC

1. Design flow for ASIC

ASIC front-end

Synopsys
IC Compiler

Synthesis/

RTL Design DET

Modeling

C/SystemC Verilog/VHDL Synopsys

DesignCompiler

|

|

|

|

|

|

|

|

|

|

I -
I High-level
|

|

|

|

|

: DFT Compiler
|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
Place & Route W
|
|
|
|
|
|
|
|
|
|
|

Design with Verilog

1. How to verify my RTL design?

_________________________ —_ % - - gum -
Design Functional verification

- Simulation : testbench

Specification How to make a good test-

bench for my design?
Is it enough?

- Formal verification

RTL Design

Modeling High complexity

C/SystemC Verilog/VHDL - Code coverage

The quality of testbench
- Lint rule check

|

|

|

|

|

|

|

|

|

|

|

! High-level
|

|

|

|

1

|

|

|

|

| - -
! Is it synthesizable?
|

Design with Verilog

2. Code coverage

* Code coverage

- Code coverage tells how well your HDL code has been exercised
by your testbench

- Statement coverage

- Block coverage

- Condition/Expression coverage
- Branch/Decision coverage

- Toggle coverage

- FSM coverage

Design with Verilog

2. Code coverage

* Statement coverage

- How many statements(lines) are covered in the simulation, by
excluding lines like module, endmodule, comments, timescale.

- Example

1 always @(posedge clock)
Z begin
3 if(x == y) begin == Statement 1
4 outl = xX+vy; => Statement Z
5 outZ = xM + yA2; == Statement 3
6 else == Statement 4
7 el =y == Statement 5
2 out? = y; => Statement &
g end

Design with Verilog

2. Code coverage

* Block coverage

- Block: a group of statements which are in the begin-end or if-else
or case or while loop or for loop

- Block coverage gives the indication that whether these blocks are
covered Iin simulation or not

- Example
1 always @(posedge clock)
2 begin => Block 1 [always block]
3 if(x == y) begin == Block 2 [If block]
4 outl = X+vy;
5 out? = xA2 + yAZ;
6 else == Block 3 [Else block]
7 ikl = x:
8 outéZ = vy;
g end

Design with Verilog

2. Code coverage

* Conditional/Expression coverage

- This gives an indication how well variables and expressions in
conditional statements are evaluated

- Example

1 out = (x xor yv) or (x and z);

All the possible cases would be available as truth table and
uncovered expression can be easily identified from the table

Design with Verilog

2. Code coverage

* Branch/Decision coverage

- Conditions like if-else, case and the ternary operator(?:) statements
are evaluated in both true and false cases

- Example
|1 always @(posedge clock)
2 begin
3 if(x = y) begin => Branch [If branch]
= outl = x+v;
5 outlZ = xM2 + yAZ;
(3] alse == Branch [Else branch]
Fi el = 2
8 outs = v;
9 end

Design with Verilog

2. Code coverage

* Toggle coverage
- It gives a report that how many times signals and ports are
toggled during a simulation run
- It measures activity in the design, such as unused signals or
constant signals or less value changed signals

* FSM coverage
- It reports that whether the simulation run could reach all of the
states and cover all state transitions in a given FSM

- It is complex coverage type as it works on behavior of the design

Design with Verilog

3. Lint
* Definition
- The generic term given to design verification tools that perform a

static analysis of software based on a series of rules and guidelines
that reflect good coding practice

- In the hardware-design space, linting is typically applied to
hardware description Ilanguages (HDLs) such as Verilog,
SystemVerilog and VHDL prior to simulation

- the goal is increasingly to clean RTL before entering that
increasingly lengthy process

- used to check for potential mismatches between simulation and
synthesis

Design with Verilog

3. Lint

* Typical Lint targets
- Unsynthesizable constructs
- Unintentional latches
- Unused declarations
- Driven and undriven signals
- Race conditions
- Incorrect usage of blocking and non-blocking assignments
- Incomplete assignments in subroutines
- Case statement style issues
- Set and reset conflicts
- Out-of-range indexing

Design with Verilog

3. Lint

* Spyglass Synthesis Rule — badimplicitSM 1

- Identifies the sequential logic in a hon-synthesizable modelling
style where clock and reset cannot be inferred

- Unsynthesizable module bism1({set reset,in1,in2, out1);

- Severlty IEVEI: EI"I"OI" |n|]|_|'[ini ,inE,rEEet,EE’[;
output outl;
req clk outl;
always [@(posedge clk or negedge set)
if(reset)
out! = 0:
else if(lset)
out1 =1;
else if(ind)
out! = inZ;
else
outl = in1;
endmodule

Design with Verilog

3. Lint

* Spyglass Synthesis Rule — badimplicitSM2

- Identifies the implicit sequential logic in a nhon-synthesizable

modeling style where states are not updated on the same clock
phase

- The synthesis tool can get confused about which edge to use for

updating the register module test(out1 out2):
- RTL and gate-level simulation results output out1,out2;

may not match reg outl,out2,a,c clk;
. _ always
- Severity level: Error hedi
egin

@ (posedge clk) out1 <= ¢;
@(negedge clk) out? <= a;
end
endmodule

Design with Verilog

3. Lint

* Spyglass Synthesis Rule — badimplicitSM4

- Identifies the non-synthesizable implicit sequential logic where
event control expressions have multiple edges

- The synthesis tool can get confused about which edge to use for
updating the register

- RTL and gate-level simulation results may not match

- Severity level: Error

always
begin
@ (posedge a or negedge a) outl <=in1,
{@(negedge a) out? <= in1;
end
endmodule

Design with Verilog

3. Lint

* Spyglass Synthesis Rule — bothedges
- Identifies the variable whose both the edges are used in an event
control list
- Synthesis tools do not allow both edges of the same variable in an
event control list

- Severity level: Error
module test(q);

output q;
req q.d,reset;

always ([@(posedge reset or negedge reset)
begin
if (reset 1= 10)
q=d
end

Design with Verilog

3. Lint

* Spyglass Synthesis Rule — mixedsenselist
- Mixed conditions in sensitivity list may not be synthesizable

- It flags mixed edge and hon-edge conditions in the sensitivity list
of an always construct.

- Severity level: Error

always [@(posedge clock or reset)
q=d

Design with Verilog

3. Lint

* Spyglass Synthesis Rule — readclock
- Unsynthesizable implicit sequential logic: clock read inside always

block
- It flags sequential descriptions where the clock signal is read
inside the always construct

- Severity level: \XYarning

always@ (posedge clk)
if(clk == 1'b1)
out! <=in1 & in2;

Design with Verilog

3. Lint

* Spyglass Synthesis Rule — \X/182g, W182h, W182n
- Identifies the triO/tri1 net declarations which are not synthesizable

- The tri0O and tri1 net declarations represent connections with
resistive pull-down or pull-up

- Some technologies may not support tristate operations
- Severity level: Error

module test (y,s0,d1,d0); module test(y,s0,d1,d0);
input s0, d1, d0; input s0, d1, d;
output v; output v
tril y;

tri0 y;

assign y = s0 7 d0 : d1;
assign y =s0 7 d0 - d1; endmodule
endmodule

20/98

Design with Verilog

3. Lint

* Spyglass Synthesis Rule — \X/182n

- Reports MOS switches, such as cmos, pmos, and nmos, that are not
synthesizable

- Except for custom or analog design, transistor-level design is
generally discouraged because behavior and timing are difficult to

predict under all possible circumstances

module test{out, in1, in2);
input in1,inZ;

output out;

wire out1 out2;

wire n;

cmos (out,in1,in2, n);
pmos (outl,in1,in2});
nmos (out,in1,in2);
endmodule

- Severity level: Error

Design with Verilog

3. Lint

* Spyglass Synthesis Rule — \X/213
- Reports PLI tasks or functions that are not synthesizable

- The PLI tasks or functions, such as $display, have no physical
meaning and therefore are not synthesizable

- translate_off & translate_on
- Severity level: \Xarning

module test (in1, clk);

input in1, clk;
always @ (clk)
ddisplay ("Value of in1 %bwn", in1};

endmodule

22/98

Design with Verilog

3. Lint

* Spyglass Synthesis Rule — \X/218
- Reports multi-bit signals used in sensitivity list

- Edge specifications for multi-bit expression is semantically
incorrect

- In such cases, only the changes on least significant bit are

Important _
_] module test1(in1,clk,out1);
- Severity level: \X/arning input [2:0]in1, clk;
output [2:0] out1;
req [2:0] out1;

always [@(posedge clk)
out! =in1;

endmodule

Design with Verilog

3. Lint

* Spyglass Synthesis Rule — \X/239
- Reports hierarchical references that are not synthesizable

- Synthesis tools, in general, do not create connections
corresponding to these references

- Severity level: \X/arning

module top(output [3:0] w2);
assign w2 = temp.w1;

endmodule

module temp();
wire [3:0] w1;
endmodule

24/98

Design with Verilog

3. Lint

* Spyglass Synthesis Rule —\X/294
- Reports real variables that are unsynthesizable

- Objects with real values have no physical equivalent and therefore
may not be synthesizable

- Severity level: \X/arning

module test(in1, in2, z);
input inT;

input inZ;

output z;

real r = 0.025; IVIOLATION
assign z =r +in1 + in2;
endmodule

Design with Verilog

3. Lint

* Spyglass Synthesis Rule — \X/430
- The “initial” statement is not synthesizable
- The initial constructs have no physical equivalent
- Severity level: \X/arning

module W430 _mod1(in1,clk out1,out);
input in1,clk;
output reg out1,outZ;

initial
begin
out1 = 1'b0;
out2 = 1'b0;
end
endmodule

26/98

Design with Verilog

3. Lint

* Spyglass Synthesis Rule — \X/442a

- Ensure that for unsynthesizable reset sequence, first statement in
the block must be an if statement

- In general, synthesis tools expect that the first statement inside an
asynchronously reset block is an if statement

Severity level: Error module DFF(D, clk, R, Q);
output Q;
input D, clk, R;
reg Q;

reg di, dZ;
always(@({posedge clk or posedge R)

begin
d2 =di;
if(R) Q = 0;
else Q = D;
end
endmodule

27/98

Design with Verilog

3. Lint

* Spyglass Synthesis Rule —-\X/442b
- Ensure that for unsynthesizable reset sequence, reset condition is
not too complex

- Violation may arise when a reset signal is compared with any
other signal or variable or a non-constant expression

- Severlty level: Error module mod(in1, clk, reset, set, out1);
input [1:0] in1;
input clk, reset, set;
output [1:0] outt;
reg [1:0] out1;

always @(posedge clk or posedge reset)
begin
if(reset == lset)
out1 <= 2'b00;
else
out! <=in1;
end
endmodule

Design with Verilog

3. Lint

* Spyglass Synthesis Rule —-\X/442c

- Ensure that the unsynthesizable reset sequence are modified only
by ! or ~ in the if condition

- Violation may arise when a reset signal is being modified by an
operator other than logical inverse (!) and bit-wise inverse (~)

oper ators
module test{reset,q);

- Severity level: Error output g
input reset;

req q.clk.d;

always @ (posedge reset or negedge clk)
begin
if (&reset)
q = 1'b0;
else
q=d
end
endmodule

29/98

Design with Verilog

3. Lint

* Spyglass Lint_Clock Rule — \X/391
- Reports modules driven by both edges of a clock

- As a result of using both the edges, the behavior of that module
gets dependent on the duty cycle of the clock
- Severity level: \X/arning

module test (out1, out?, in1, in2, clk);
input in1, in2, clk;
output out1, outZ;

reg out1, outZ;

always @(posedge clk)
out! =int;

always [@(negedge clk)

out? = inZ;
endmodule

Design with Verilog

3. Lint module test(in1, in2, in3, out1);
input in1, in2, in3;

* Spyglass Lint_Clock Rule — \X/401 output out!:

- Clock signal is not an input to the my_clock mod1(in1. in2, in3, outl):

design unit endmodule
- Localize clock generation and gating module my clock(in1, in2, clock, out1):
to a single module if possible input in1, in2, clock,

output out1;

- Timing and test issues can be

managed carefully with respect to that 92" -clk outt

one module rather than in many always@(posedge clock)

locations in the desi begim

ocations in the design DFF _clk <= in1:
end

- Severity level: \X/arning

always(@({posedge DFF_clk)
begin
outl <=in2;
end
endmodule

Design with Verilog

3. Lint

* Spygilass Lint_Clock Rule — \X/422

- Unsynthesizable block or process: event control has more than
one clock

- It reports violation for potentially un-synthesizable block

- Severity level: \X/arning

module mod(ini, in2, clk1, clk2, out1);
input in1, inZ;

input clk1, clk2;

output out1;

req outl;

always@(posedge clk1 or posedge clk2)
out! =in1 * in;

endmodule

Design with Verilog

3. Lint

* Spyglass Lint_Reset Rule — \X/392

- Reports reset or set signals used with both positive and negative
polarities within the same design unit

- When both polarities of reset/set signal are used, one logic block

always remain in a reset/set state ?;',‘;’.f'.'ﬂiﬁﬁﬁ; Q2, Dataln, C_SCLK1, C_SRST1);
input C_SCLK1;

- Violation may arise when two input C_SRSTH:
output [2:0] Q1, Q2;

different IP blocks are connected e

always @(posedge C_SCLK1 or posedge C_SR5T1)

together at a SoC level begin
if (C_SRST1) /MIOLATION

- Severity level: \X/arning egf 2p11;

Q1 = Dataln[1:0];
end
always @(posedge C_SCLK1 or negedge C_SRST1)begin
if (IC_SRST1)
Q2 =2'b11;
else
Q2 = Dataln[1:0];
end
endmodule

Design with Verilog

3. Lint

* Spygilass Lint_Reset Rule — \X/395

- Multiple asynchronous resets or sets in a process or always may
not be synthesizable

- It reports if more than one asynchronous reset or set signals exist
In the same process or always block

- Severity level: \X/arning

always (@ (posedge clk, posedge rst1, posedge rsi?)
begin

if (rst1)

t <= 1'b0:;

else if (rst2)

t <= 1'b0;

else if(clk)

t<=in1 &in2;

end

Design with Verilog

3. Lint

* Spyglass Lint_Reset Rule — \W501
- A connection to a reset port should not be a static name

- Always connect a real signal. Tie that signal off if you really want
to disable the reset

- Severity level: \XYarning

INST1: test port map { d == input(0).
clk == clk,
rst == 0",
q=>s1};

INSTZ: test port map (d == s1,
clk == clk,
rst == input{1),
q == output);

Design with Verilog

3. Lint
* Spygilass Lint_Latch Rule — \X/18

- Do not infer latches

- Check the inference to make sure it is what you intended

- If not, prevent latch inferences by providing an explicit else clause
at the end of the if statement, or default clause at the end of the
case statement, to prevent inferring the latch

- Severity level: \X/arning

process (reset, d)
begin
if (reset ='1") then
q<=d,
end if:
end process;

Design with Verilog

3. Lint

* Spyglass Assign Rule — \X/19

- Reports the truncation of extra bits

- When constant value is wider than the width of the constant, it
results in truncation of extra bits

- To resolve the violation, determine the width specification and the

constant value

- Severity level: \X/arning module operator(clk1,out1);
input clk1;
output out1;

reg outl;

always {@(posedge clk1) begin
out1 = 1'b101; //{Constant 1'b101 will be truncated)
iflout! == 2'b0101)//Constant 2’b0101 will be truncated)
begin
end
end

endmodule

Design with Verilog

3. Lint

* Spyglass Assign Rule — \X/336
- Blocking assignment should not be used in a sequential block

- When a blocking assignment is used in a sequential block,
inherent sequence of operation is implied in simulation

- However, the synthesized hardware may behave in a concurrent

fashion module test3(clk, reset, d, q);
. . input clk, reset, d;
- Severity level: \X/arning output q:
req q.

always @(posedge clk or negedge reset)
begin
if (Ireset)
q = 1'b0;
else
q=d:
end

endmodule

Design with Verilog

3. Lint

* Spyglass Assign Rule - \X/414
- Reports nhonblocking assignment in a combinational block

- Violation may arise when a nonblocking assignment is used in a
combinational block

- Not fixing the violation may result in unexpected code behavior
- Severity level: \X/arning

Case 1

out! <= in1 & in2:
out? =in3 & ind;
Case 2

outl == inl & in2;
out? < =1in3 & ind;

Design with Verilog

3. Lint

* Spyglass Case Rules

- \W/69: case constructs that do not have all possible clauses
described and also do not have the default clause

-\X/7 1: case constructs that do not contain a default clause

-\X/187: case constructs where the default clause is not the last
clause

-\W/263: case constructs that do not have all possible clauses
described and have a default clause

- \X/398: Duplicate choices in CASE construct

Design with Verilog

3. Lint

* Spyglass Instance Rules
-\X/107: Bus connections to primitive gates

-\W/110: Width mismatch between a module port and the net
connected to the port in a module instance

-\X/287a: Module instances where nets connected to input ports are
not driven

Design with Verilog

3. Lint
* Lint rule examples (Leda Verilint policy)

E25

Message: Bits are backwards

Description | Leda fires for this rule when it detects that the high index of the width range is in the RHS.

Policy VERILINT
Ruleset CHECKER_ERROR

Language |Verilog

Type Block-level

Severity Error

module top(a, b):
input [Z:1]a:;
output [2:1]b:
reg [Z2:1]1b:;

always @ (al[l:2] or al[Z])

42/98

Design with Verilog

3. Lint
* Lint rule examples (Leda Verilint policy)

E54

Message: Instance name required for module

Description | Leda fires for this rule when there is no instance name for a module. To solve this problem, name the instance.
Policy VERILINT
Ruleset CHECKER_ERROR

Language | Verilog

Type Block-level

Severity Error

module top (clk, reset, d, qg):
input clk, reset, d;
output gr

test (clk, reset, d, g): [//E54, no instance name.

43/98

Design with Verilog

3. Lint
* Lint rule examples (Leda Verilint policy)

E66

Message: Not a constant expression

Leda fires for this rule when it detects variables in parameter or defparam definitions. To solve this problem, use a constant

Description -
expression.

Policy VERILINT
Ruleset CHECKER_ERROR

Language |Verilog

Type Block-level

Severity Error

module test:

integer 1i;
parameter k = 1i;

44/98

Design with Verilog

3. Lint
* Lint rule examples (Leda Verilint policy)

E267

Message: Range index out of bound

module top(clk, reseta, resetb, a, b):
input clk, reseta, resetb:;

input [Z2:1]a:

output [Z2:1]b;

reg [Z:1]b:;

always @ (posedge al[l:0])

Design with Verilog

3. Lint
* Lint rule examples (Leda Verilint policy)

W69

Message: Case statement without default clause but all the cases are covered

Leda fires for this rule when it finds a case statement that has no default clause, but which appears to cover all cases. Even if all
Description | cases that have 1's and 0O's are covered, there may be others that are not covered. A default clause can cover these additional

cases.
Policy VERILINT
Ruleset CHECKER_ERROR

Language | Verilog

Type Block-level

Severity Warning

46/98

ASIC Front-end

1. Now, synthesizable. Is it enough?

_____________ >% - -
| ASIC frontend Design constraints

- Timing
Does the operation speed of the design meet the
spec?

|
|
|
|
|
|
|
|
|
|
Synthesis/ . Does the power consumption of the design meet
DFT | the spec?
|
|
|
|
|
|
|
|
|
|

- Power
Synopsys - Area
DesignCompiler i i i
DFT Compiler Does the design fit for the size of product?

* DFT rule check

| e e e + - How to identify the defect caused by
manufacturing process

47/98

ASIC Front-end

2. Pipelined design

* Pipelined RTL
- Insert the additional F/Fs into the data path

1 _
o %—%D}TDT
y

Clock cycle is 4 gate delays

D) —
g

Clock cycle is 2 gate delays 1

ASIC Front-end

3. Low power design

* Dynamic power
- Power dissipation in a CMOS transistor depends on the
capacitance, supply voltage and the rate at which the data toggles

P =f Cload VDD"

- C,aq IS the load capacitance of the CMOS transistor
- Vp Is the supply voltage
- f is the frequency at which the data transition happens

- An efficient and high quality HDL code can reduce unwanted
transitions

49/98

ASIC Front-end

3. Low power design

* Minimizing data transitions on bus

- The data on the bus keeps on transitioning from one value to
another because there is no default state for assigning a constant

value

// Code that resets the bus to default | I/l Code that holds the bus to its previous
status after valid gets de-asserted value after valid gets de-asserted
always@(posedge clk or negedge reset) always@(posedge clk or negedge reset)
begin begin

if(Ireset) if(lreset)

data_bus <= 16'b0 ; data_bus <= 16'b0 ;

else if (data_bus_valid) else if (data_bus_valid)

data bus <= data o data bus <= data o ;

else end

data bus <= 16'b0 ;
end |

ASIC Front-end

3. Low power design
* Resource sharing

- The RTL coding should be carried out in a manner that there are
no unwanted or redundant logic elements

/I Example where resource sharing is not
possible

always@(in1 or in2 or sel)

if(sel)
out1 =in1 +iIn2 ;
else
out1 =4'b0 ;
always@(in3 or in4 or sel)
if (Isel)
out2=in3 +in4 ;
else
out2 =4'b0 ;

// Example where resource sharing is
possible

always@(in1 or in2 or sel or in3 or in4)
if(sel)

begin
outt =in1 +1in2;
out2 =4'b0 ;
end
else
begin
out1 =4'b0 ;
out2=IN3+in4 ;

end

ASIC Front-end

3. Low power design

* Avoiding unnecessary transition of signal

- It is seen in many designs that certain signals transit when they
are not required to, but they are not detected in functional
verification, as they satisfy the logical requirements.

* State Machine Encoding

- It is a well known fact that one-hot and Gray encoding
consume lesser power as compared to binary encoding

ASIC Front-end

3. Low power design

* Control over counters

- Due to improper coding, all the start and stop conditions are not
taken care of and the counter may unnecessarily keep on counting

//Example of unnecessary counter | //Example that removes
transitions unnecessary counting transitions
always@(posedge clk or negedge | | always@(posedge clk or negedge
reset) . reset)
begin begin

if(!reset) | if(!reset)

cnt <=4'b0 | cnt <= 4b0

else if{(cnt = 4°b0111) | else if(cntr_reset)
cntr_reset) cnt <=4°00 .

cnt <=4°00 else if(cnt < 4°00111)

else cnt <=cnt +1°bl ;

cnt <=cnt +1°b1 end

end

ASIC Front-end

3. Low power design
* Register retiming

- There is a saving of logic and thus can help improve upon power
consumption

Without Retiming

With Retiming

ASIC Front-end

3. Low power design

* Clock gating
- Clock
Highest transition probability
Long lines and interconnections

Consumes a significant fraction of power (sometimes more than
40% if not guarded)

Clock — IR

Register File
Decode _!_)7 A B

Logic

ASIC Front-end

3. Low power design

* Clock gating
- Gate the clock if is not needed

Hflock-gating efficiently reduces power

ithout clock gating

30.6mW
With clock g_
MPEG4 decoder
8.5mW SR] “!I“l’nrj*;,*l‘:[-ﬁﬂh:‘,

L A 1 A 1 A
0 5 10 15 20 25
Power [mW]

90% of F/F’s were clock-gated.

70% power reduction by clock-
gating alone.

Courtesy M. Ohashi, Matsushita, ISSCC 2002

ASIC Front-end

4. DFT

* DFT mandatory rules (Synopsys Tetramax)
- D1 : Clock of F/F cannot be controlled

By inserting multiplexer with scan clock from outside of the design,
D1 rule can be fixed

st Ck B3

e

Tt G E —D—p

ASIC Front-end

4. DFT

* DFT mandatory rules (Synopsys Tetramax)
-D2/D3 : Reset/Set of F/F cannot be controlled

By inserting multiplexer with external reset from outside of the
design, D2 and D3 can be fixed

Rst I:D—‘i le (!)

D [L Q

Test_Asyre

Test _Asyic @@ é)

Test_Asyax mst disable
the csyirclranous pincf the

ASIC Front-end

4. DFT

* DFT mandatory rules (Synopsys Tetramax)

- D9 : Clock gating logic is not identified — clock of F/F cannot be
controlled

Clock gating identification is only way to fix this violation
Unrecognizable clock gating logic have to be removed

. &

= < =] e
CB:E CEC

(s > >

\

ASIC Front-end

4. DFT

* DFT mandatory rules (Synopsys Tetramax)
- D11 : race condition between clock and data input is occurred

This violation is caused by F/F which use scan test clock as its data
input signal

Y D JJ Q
S E
ST =7

For design quality assurance

* Functional verification
- Code coverage
- Lint
* Design constraints verification
- Timing
- Power
- Area

* DFT

ASsIc el VERILOG HDL IIIE 2

) B Al | D A
IC DESIGN EDUCATION CENTER

62/98

Synchronization

1. Non-ideal FF behavior

* Timing factors
- Setup time : minimum time before the clocking event by which the

input must be stable (T)
- Hold time : minimum time after the clocking event until which the

input must remain stable (T,)
- Propagation delay : amount of time for value to propagate from

input to output (T,,)

| Tsu T h
Tsu Th 1.8 0.5 V data
J1.8 0.5 R —ns NS data___5 Q— —ID Q
D ns ns
T, N\ | /T_ > >
4l 3.3 # 3.3 ‘

Clk ns * ns ‘ clock

Synchronization

2. Clock skew

* The problem
- Correct behavior assumes next state of all storage elements
determined by all storage elements at the same time

- This is difficult in high-performance systems because time for clock
to arrive at flip-flop is comparable to delays through logic

- Effect of skew on cascaded flip-flops:

l 100
1 1 1 L | 1 1 L L !
In .
CLK1 is a delayed
QO 1 / version of CLKO
Q1 l
CLKO K\)//
CLK1 \ 7

Synchronization

3. Metastability
* Definition
- Violating setup/hold time can lead to a metastable state

- Any flip-flop state other than a stable 1 or 0
- Eventually settles to one or other, but we don’t know which

* Solution
- Insert synchronizer flip-flop for asynchronous input

G B

E—-—-—E Q 4/.;\/““’\{_ ai_> .
setup time \/ f B
ViOIatiDn mEtaStable synchronizer

state >

Synchronization

3. Metastability

* More than doubile flip-flop
- One flip-flop doesn’t completely solve problem

- Add more synchronizer flip-flops to decrease the probability of
metastability

- Can’t solve completely

- just decrease the likelihood of failure
Probability of flip-flop being metastable is...

very
very very incredibly
low low low low
ai ——
> > > >

~N oL o

synchronizers

=

66/98

Synchronization

4. Synchronization failure

* Occurs when FF input changes close to clock edge
- The FF may enter a metastable state : Neither a logic O nor 1
- It may stay in this state an indefinite amount of time
- This is not likely in practice but has some probability

. |logic 1 ——

/ \ B [
= =~

W, B

A

. . logic O o '
logic O logic 1 J '““:—H-x_:
Time —
small, but non-zero probability oscilloscope traces demonstrating
that the FF output will get stuck synchronizer failure and eventual

in an in-between state decay to steady state

Synchronization

5. Handling asynchronous inputs

Clocked

Synchronous Synchronizer

D Q

In
— | In is asynchronous and
fans out to DO and D1

0
QW |

A one FF catches the
Q1

signal, one does not
CLK— | I I .

inconsistent state may
be reached!

1. Blocking vs. Non-blocking

* Blocking (=) assignment
- Blocking assignments happen sequentially
- Blocking assignments are used when specifying combi. logics

always @(posedge Clock) begin "
B A;
; Clock ——
C B; |
D 0: |
end \

T — — — ———— — — — — ———— — — — —

69/98

1. Blocking vs. Non-blocking

* Non-blocking (<=) assignment
- Non-blocking assignments happen in parallel
- Non-blocking assignments are used when specifying seq. logics

b |
E
ZH

always @(posedge Clock) begin

o o B v+ |
AA A
T = v -

end

Latch-free Design

1. Latch generation

* Incomplete assignment

- If you don’t assign every element that can be assigned inside an
always@(*) block every time, a latch will be inferred

- C on the other hand is not always assigned
- As such, a latch is inferred for C

e — — — — — — —— — — —— —

wire Trigger , Pass;

A
[!
|
Pass I C
reg A, C; ,: | Latch .‘JI
: __—
always @(*) begin . T I
I
L E TYHOS Trlgger’I _ :
if (Trigger) begin : |
A = Pass; I ThO_ I :
C = Pass; : A
end I 1 "
end : 1 I
|
|
\ |

Latch-free Design

2. Latch-free

* Complete assignment

- Default values are an easy way to avoid latch generation, however,
will sometimes break the logic in a design

- Typically, they involve proper use of the Verilog else statement,
and other flow constructs.

—— e e e e

wire Trigger , Pass;

Pass
reg A, C; » ' ?\j

always @{(*) begin
A 1'b0;
C 1*bi;
if (Trigger) begin
A Pass;
C Pass ;

Trigger

end
end

i
|
|
|
|
|

¢
|
|
|
|
|
|
|
|
\

Advanced design issues

* Synchronization

- Clock skew

- Metastability

- Asynchronous input handling
* Assignment

- Blocking assignment

- Non-blocking assignment

* Latch-free design

73/98

ASIC Design Flow && - 814

) B Al | D A
IC DESIGN EDUCATION CENTER

74/98

Synthesis — Design Compiler

AR

1. Target Library =0

* Target library
- tc6a_cbacore.db: SYNOPSYS®IA Ml 0= Elo|EHE{2|
- target_library: 278 Al A18-Z BIO|HE1E]
- link_library: RTL 2 E “59AM &E instantiation® = 2O |EHZ{2] cell

Ol EHCH link 2178 ClIAM I ME 4 QI U= B10|HE{=|

i1y

% NI
—

dc_shell> set target_library “tc6a_cbacore.db”

dc_shell> set link_library “tc6a_cbacore.db”

Synthesis — Design Compiler

2. Design &=H|
* \Working space
- Design 221 178 9M E2°8 0= =8 Tt&°| ™M™YE working space &

A
o)

-E NE LU F= BTICHT] 210 FIRRER| 4N X MAES

I;

i1y

* =
dc_shell> sh rm —rf .template
dc_shell> sh mkdir .template
dc_shell> define_design_lib WORK —-path .template

76/98

Synthesis — Design Compiler

2. Design &=H|

* Design Tt 247

- Design B[217]: analyze command A4, 2912 = &M E YRS

i1y

% N1

—
dc_shell> analyze —format verilog

../O1_RTL/src/rtl/verilog/stack_top.v

dc_shell> source
/home/student40/100_EXPR/02_SYN/import_design.src

77/98

Synthesis — Design Compiler

2. Design =H|
* Design Elaboration & Link

- Design hierarchy= +=9Y[= elaboration & link §

- 5 1 0|} instantiation EI= module®ll Ei%H 22=°] module= 21215}

= uniquify T &%=

AUH

i1y

* &
dc_shell> elaborate RISC_CORE
dc_shell> current_design RISC_CORE
dc_shell> link

Synthesis — Design Compiler

3. Design Constraints Z=H|

* Timing constraints 76 2|
- Clock== 78 2l: create_clock, create_generated_clock

* N1\
==

dc_shell> create_clock —name “Clk” —period 7 —waveform {0 3.5} [get_ports “Clk”]
dc_shell> set_don’t_touch_network [get_clocks “CIk"]

dc_shell> set_input_delay 4.4 —max —rise —clock “Clk” [get_ports “Instrn[*]"]
dc_shell> set_input_delay 4.5 —max —fall —clock “CIk” [get_ports “Instrn[*]”]
dc_shell> set_input_delay 4.4 —max —rise —clock “Clk” [get_ports “Reset”]
dc_shell> set_input_delay 4.3 —max —fall —clock “CIk” [get_ports “Reset”]
dc_shell> set_output_delay 4.3 —max —fall —clock “CIk” [all_outputs]
dc_shell> set_clock_uncertainty 1.0 —setup [get_clocks “CIk"]

dc_shell> set_clock_uncertainty 0.055 —hold [get_clocks “CIk”]

dc_shell> set_false_path —to [get_cells “I_ALU/Neg_Flag_reqg”]

dc_shell> set_false_path —to [get_cells “I_ALU/Zro_Flag_req”]

dc_shell> set_wire_load_mode “enclosed”

79/98

Synthesis — Design Compiler

4. Design &8
* Desigh &8 £Y%

- compile_ultra

- Design== Target library= mapping, timing constraints, area

constraints, power constraintsE€ RZTPICI= ME BIEY

i1y

=
dc_shell> compile_ultra —scan —no_autoungroup
—no_seq_output_inversion —no_boundary_optimization

Synthesis — Design Compiler

5. Design 76 211 ZI2!10|7]
* Design constraints A% 29!

- Timing violation: report_timing

- Area overhead: report_area

- Power overhead: report_power

i1y

* &
dc_shell> report_timing —nworst 2 —delay_type max
dc_shell> report_timing —nworst 2 —delay_type min
dc_shell> report_area —hier

dc_shell> report_power —hier -verbose

Synthesis — Design Compiler

6. Design &8 211 T2 " 3017
* 28 24 IE 8%

- Gate-level netlist, DDC, SDF, SDC Bl T A48

oD

* N\
—

dc_shell> write —f verilog —hier —output RISC_CORE_gate.v

dc_shell> write_sdf —v 2.1 —context verilog RISC_CORE_gate.sdf

ASIC Design Flow &€& - LEC

) B Al | D A
IC DESIGN EDUCATION CENTER

83/98

Logic Equivalent Check — Formality

-4 A4
1. &8 &7

* LEC % o3 7" M aany

- Design elaboration error waive®l7| 2|2} setting

- Design elaboration= £|2! library 178

i1y

o
fm_shell> set hdlin_warn_on_mismatch_message “FMR_ELAB-146
FMR_ELAB-147 FMR_ELAB-149"
fm_shell> read_db
/tools/synopsys/design_compiler/libraries/syn/tc6a_cbacore.db

Logic Equivalent Check — Formality

2. Design &79

* RTL Design &7%
- Golden. Formality®lIM= reference®t B

i1y

% NI

=
fm_shell> read_verilog —libname XWYORK —c r

/home/student40/100_EXPR/01_RTL/src/rtl/verilog/stack_top.v

fm_shell> set_top r;/WORK/RISC_CORE

Logic Equivalent Check — Formality

A4 7

2. Desigh =

* @Gate-level Desigh =
- Revised. Formality®lIM= implementation®|=t &

Ad7Y

oD

=
fm_shell> read_verilog —libname \XYORK —c i ./RISC_CORE_gate.v
fm_shell> set_top i:/\WORK/RISC_CORE

Logic Equivalent Check — Formality

3.LEC &%
* Verification £% 5S¢ 271401

- Reference designil implementation design £7¢ ¥ &% &%
- 2% Z211 7 non-equivalent?! 59 #1901 Ttor 2 O 17y 210

i1y

* B
fm_shell> set_reference_design r:;/\XYORK/RISC_CORE
fm_shell> set_reference_design i;/\WORK/RISC_CORE
fm_shell> verify r;/\XY ORK/RISC_CORE i:/\XORK/RISC_CORE

Logic Equivalent Check — Formality

4. Non-equivalent #2! S{=2 1179
* GUIE T2 #4220 Oy

- Register merge, constant register deletion 5°ll 21°ll unmapped
pomt uu\ual-l— =14 0 '||- Or o

—_ O T LY =
- 28 Mg 28 M 20§ EE= LEC "9 9llM design®ll EHE! g H BHO50 107 Of
= 5

i1y

* &
fm_shell> set_svf [glob ./top.svf] => Design compiler®I/ 873
or

fm_shell> guide

fm_shell> guide_reg_merging —design INSTRAN_LAT —-from
{Crnt_Instrn_1_reg[0] Crnt_Instrn_2_reg[0]} —to {Crnt_Instrn_2_reg|[0]}

fm_shell> setup

ASIC Design Flow &% - DFT

) B Al | D A
IC DESIGN EDUCATION CENTER

89/98

DFT — Design Compiler

1. Target Library &7%

* Target library
- tc6a_cbacore.db: SYNOPSYS®IA Ml 0= Elo|EHE{2|
- target_library: 278 Al A18-Z BIO|HE1E]
- link_library: RTL 2 E “59AM &E instantiation® = 2O |EHZ{2] cell

Ol EHCH link 2178 ClIAM I ME 4 QI U= B10|HE{=|

i1y

% NI
—

dc_shell> set target_library “tc6a_cbacore.db”

dc_shell> set link_library “tc6a_cbacore.db”

DFT — Design Compiler

2. Design =H|
* \Working space
- DFT 1178 9lAM 274 01= =8 T2 M"Y reporting space &278

|

=
-E NE LU F= BTICHT] 210 FIRRER| 4N X MAES

i1y

% N1

—
dc_shell> sh rm —rf report
dc_shell> sh mkdir report

DFT — Design Compiler

2. Design &=H|
* Design Tt 247

- Gate-level Design Reading: read_verilog -netlist

i1y

=
dc_shell> read_verilog —netlist ./RISC_CORE_gate.v
dc_shell> current_design RISC_CORE

dc_shell> link

92/98

DFT — Design Compiler

3. DFT constraints 78 °|

* DFT configuration 76 2
- Scan test configuration

* N1\
= =i

dc_shell> set_scan_configuration —chain_count 4

dc_shell> set_scan_configuration —add_lockup true

dc_shell> set_scan_configuration —lockup_type latch

dc_shell> set_scan_configuration —clock_mixing mix_clocks

dc_shell> set_scan_configuration —create_dedicated_scan_out_ports true
dc_shell> set_scan_configuration —preserve_multibit_segment true
dc_shell> set_scan_configuration —style multiplexed_flip_flop

dc_shell> set_scan_configuration —replace true

DFT — Design Compiler

3. DFT constraints 78 °|

* DFT configuration 76 2
- DFT signal 78 2]

* N1\
= =i

dc_shell> create_port scan_mode

dc_shell> set_dft_signal —view spec —port scan_mode —-type TestMode
—active 1

dc_shell> set_dft_signal —view exist —port Reset —active 1

dc_shell> set_dft_signal —view exist —port ScanClock —timing [list 45 55]

94/98

DFT — Design Compiler

4. Pre-DFTDRC X'%¥

* DFT rule checking

- Pre-DFT DRCE deS|gn'-|1°| 2= flip-flop®ll EH®H scan chain®ll &5t
':'HO|'I|-I—UI-7(| |'

* N1\
==

dc_shell> create_test_protocol —capture_procedure single_clock
dc_shell> dft_drc —verbose —pre_dft > report/drc_pre_insert.dft

DFT — Design Compiler

5. DFT insertion X'%%

* DFT insertion
- Pre-DFT DRC®|| EHE! BAT S B2 ¥ design “9°ll scan chainZ &1&i0}
= I=""II
- DFT &1 ¥ post-DFT DRC ™'%

* N1\
==

dc_shell> preview_dft —test_points all —show all > report/preview_dft.log

dc_shell> insert_dft
dc_shell> dft_drc —verbose > report/insert_drc.dft

96/98

DFT — Design Compiler

6. DFT 2.1 OfE ¢
* DFT 21 Tl reporting
- DFT &&= ¥ 2] gate-level netlist
A=

- Scan chain "8 EHE XN= def T
- ATPGE 22! HIAE procedure TI&

* Vol PaN
= =i

dc_shell> write —f verilog —hier —out report/RISC_CORE_after_scan.v
dc_shell> write_scan_def —output report/RISC_CORE_after_scan.def
dc_shell> write_test_protocol —o report/RISC_CORE_after_scan.spf

97/98

Thank you

